系統(tǒng)下載、安裝、激活,就到系統(tǒng)天地來!

所在位置: 首頁 — IT資訊 — 業(yè)界

TensorFlow 2.2.0-rc0發(fā)布更新

作者:系統(tǒng)天地 日期:2020-03-15

TensorFlow 2.2.0-rc0已發(fā)布,據(jù)官方介紹,TensorFlow 是一個采用數(shù)據(jù)流圖(data flow graphs),用于數(shù)值計算的開源軟件庫。節(jié)點(Nodes)在圖中表示數(shù)學(xué)操作,圖中的線(edges)則表示在節(jié)點間相互聯(lián)系的多維數(shù)據(jù)數(shù)組,即張量(tensor)。它靈活的架構(gòu)讓你可以在多種平臺上展開計算,例如臺式計算機中的一個或多個CPU(或GPU),服務(wù)器,移動設(shè)備等等。TensorFlow 最初由Google大腦小組(隸屬于Google機器智能研究機構(gòu))的研究員和工程師們開發(fā)出來,用于機器學(xué)習(xí)和深度神經(jīng)網(wǎng)絡(luò)方面的研究,但這個系統(tǒng)的通用性使其也可廣泛用于其他計算領(lǐng)域。

 

TensorFlow 2.2.0-rc0發(fā)布更新

 

更新內(nèi)容如下: 

主要特性和改進(jìn)

將字符串張量的標(biāo)量類型從 std::string 替換為 tensorflow::tstring 

TF 2 的新 Profiler,用于 CPU/GPU/TPU。它提供設(shè)備和主機性能分析,包括輸入管道和 TF Ops。

不推薦使用 SWIG,而是使用 pybind11 將 C++ 函數(shù)導(dǎo)出到 Python,這是棄用 Swig 所作努力的一部分。

 

tf.distribute:

將 NVIDIA NCCL 更新到 2.5.7-1,以獲得更好的性能和性能調(diào)整。

支持在 float16 中減少梯度。

所有實驗的支持都減少了梯度壓縮,以允許使用反向路徑計算進(jìn)行重疊梯度聚合。

通過使用新添加的 tf.keras.layers.experimental.SyncBatchNormapzation 層,添加了對全局同步 BatchNormapzation 的支持。該層將在參與同步訓(xùn)練的所有副本之間同步 BatchNormapzation 統(tǒng)計信息。

使用 tf.distribute.experimental.MptiWorkerMirroredStrategy 提高 GPU 多工分布式培訓(xùn)的性能

 

tf.keras:

可以通過覆蓋 Model.train_step 將自定義訓(xùn)練邏輯與 Model.fit 結(jié)合使用。

輕松編寫最新的培訓(xùn)循環(huán),而不必?fù)?dān)心 Model.fit 為你處理的所有功能(分發(fā)策略,回調(diào),數(shù)據(jù)格式,循環(huán)邏輯等)

Model.fit 的主要改進(jìn):

現(xiàn)在,SavedModel 格式支持所有 Keras 內(nèi)置層(包括指標(biāo),預(yù)處理層和有狀態(tài) RNN 層)

 

tf.lite:

默認(rèn)情況下啟用 TFpte 實驗性新轉(zhuǎn)換器。

 

XLA

XLA 現(xiàn)在可以在 Windows 上構(gòu)建并運行。所有預(yù)構(gòu)建的軟件包都隨附有 XLA。

可以在 CPU 和 GPU 上使用“編譯或拋出異常”語義為 tf.function 啟用 XLA。